
Varistat, a library for statistical analysis in population genetics

Dante Dam¹, Kevin Thornton² (¹Department of Computer Science, ²Department of Ecology and Evolutionary Biology)

I. Introduction

Modern genetic datasets are rapidly growing in number
and scale, faster than our ability to analyze them
effectively. A decade ago, the 1000 Genomes project
characterized thousands of human genomes at millions
of sites[1]. In 2021, the UK Biobank released 200,000
whole human genomes; whole genome sequencing is
ongoing for another 300,000 individuals. Such studies
have also been repeated on other taxa, including E. coli[2]

and Oryza sativa (rice)[3].
The existing software infrastructure is still developing
the ability to handle datasets of this scale. For example,
Python-based solution scikit-allel is slow and unwieldy
at these scales due to memory constraints. Many such
tools are limited by over-reliance on particular input for-
mats which are overspecialized to a particular workflow.
We introduce a new flexible software library for the
computation of summary population genetics statistics
designed with these modern data scales in mind.

II. Big ideas for our solution

Figure 1: Our library’s overall design, showing what data are
required at each step.

i. Modularity

We divide the overall workflow into several independent
steps; the first is input. Multiple formats are natively
supported. First, the Variant Calling Format (VCF), a
common representation of measured genotypic data.
We also support input from tree sequences, an efficient
data encoding based on ancestral relationships among
sampled genomes. These often represent the result of

in silico simulation. Any other data format which can be
read as a collecton of sites and variants is also accepted.
After computing allele counts from this data, statistics
can be computed using said allele counts. These allele
counts can also be easily accessed for any other process-
ing task the end user wishes to implement.

ii. Rust

A unique feature of our tool is that it is written in Rust, a
low-level language focusing on memory safety, correct-
ness, and low- and zero-cost abstractions. This allows it
to be used from C, C++, Python, R, and anywhere else C
bindings are accepted, allowing it to follow bioinformati-
cians to their language of choice.

iii. Testing

To verify the correctness of our statistics, we create
parallel naive implementations which adhere closely to
the formal definition of a statistic. We then demonstrate
that our optimized code is equivalent to the naive imple-
mentation.

III. Results

0 5,000,000,00010,000,000,00015,000,000,00020,000,000,00025,000,000,00030,000,000,00035,000,000,00040,000,000,000
Total allele count

10^-3

10^-2

10^-1

1

10^1

10^2

T
im

e
 (

se
co

n
d

s)

scikit-allel

varistat

Library

Figure 2: Our new solution computes expected heterozygosity
about 10× faster (median of 𝑛 = 10 runs) than scikit-allel. Note that
the time axis is on a log10 scale. Test data is the 24 distinct human

chromosomes[1].

Following these design principles, support for these sta-
tistics has been fully realized and tested:

• Expected heterozygosity/diversity, 𝜋 or 𝜃𝜋
• Watterson’s[4] estimator 𝜃, measuring mutation rate
• 𝐹ST, measuring migration rate (by multiple defini-

tions[5], [6], [7])
• Tajima’s 𝐷[8], summarizing skew in allele frequencies
Our library is available at the GitHub link at bottom left.

IV. Next steps

Work is ongoing to add parallelism, unlocking additional
performance gains over existing solutions, particularly
those utilizing NumPy parallelism already. This requires
support for indexed input formats and a multithreaded
engine for statistic computation.
Statistics involving genome position have yet to be ex-
plored, e.g. those involving sliding genomic windows or
normalization by sequence length. This library currently
does not record site positions and relies on the user to
select desired sites before calculating a statistic.

V. Acknowledgements

Thanks to the UROP Research Expe-
rience Fellowship for funding the pro-
duction of this poster. Thanks to the
School of ICS OpenLab HPC for provid-
ing resources for benchmarking of this
library and its counterparts.

References

[1] A. Auton et al., “A global reference for human genetic variation,” Nature, vol. 526, no. 7571, pp.
68–74, Oct. 2015, doi: 10.1038/nature15393.

[2] D. G. Mets and M. Morin, “Creating a 7,000-strain E. coli genotype dataset with antimicrobial
resistance phenotypes,” Arcadia Science, vol. 1, Aug. 2024, [Online]. Available: https://research.
arcadiascience.com/pub/dataset-ecoli-amr-genotype-phenotype

[3] J.-Y. Li, J. Wang, and R. S. Zeigler, “The 3,000 rice genomes project: new opportunities and
challenges for future rice research,” Gigascience, vol. 3, no. 1, p. 8, May 2014.

[4] G. Watterson, “On the number of segregating sites in genetical models without recombination,”
Theoretical Population Biology, vol. 7, no. 2, pp. 256–276, 1975, doi: https://doi.org/10.1016/
0040-5809(75)90020-9.

[5] B. S. Weir and C. C. Cockerham, “ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POP-
ULATION STRUCTURE1,” Evolution, vol. 38, no. 6, pp. 1358–1370, 1984, doi: 10.1111/
j.1558-5646.1984.tb05657.x.

[6] M. Slatkin, “ISOLATION BY DISTANCE IN EQUILIBRIUM AND NON‐EQUILIBRIUM POPULATIONS,”
Evolution, vol. 47, no. 1, pp. 264–279, 1993, doi: 10.1111/j.1558-5646.1993.tb01215.x.

[7] R. R. Hudson, D. D. Boos, and N. L. Kaplan, “A statistical test for detecting geographic subdi-
vision.,” Molecular Biology and Evolution, vol. 9, no. 1, pp. 138–151, 1992, doi: 10.1093/
oxfordjournals.molbev.a040703.

[8] F. Tajima, “Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.,”
Genetics, vol. 123, no. 3, pp. 585–595, 1989, doi: 10.1093/genetics/123.3.585.

https://github.com/ThorntonLab/popgen-oxide UCI Undergraduate Research Symposium 2025 ddam1@uci.edu, krthornt@uci.edu

https://doi.org/10.1038/nature15393
https://research.arcadiascience.com/pub/dataset-ecoli-amr-genotype-phenotype
https://research.arcadiascience.com/pub/dataset-ecoli-amr-genotype-phenotype
https://doi.org/https://doi.org/10.1016/0040-5809(75)90020-9
https://doi.org/https://doi.org/10.1016/0040-5809(75)90020-9
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
https://doi.org/10.1111/j.1558-5646.1993.tb01215.x
https://doi.org/10.1093/oxfordjournals.molbev.a040703
https://doi.org/10.1093/oxfordjournals.molbev.a040703
https://doi.org/10.1093/genetics/123.3.585

	Introduction
	Big ideas for our solution
	Modularity
	Rust
	Testing

	Results
	Next steps
	Acknowledgements
	References

